
ADIFOR: A FORTRAN SYSTEM FORPORTABLE AUTOMATIC DIFFERENTIATION�Christian BischofAndreas GriewankMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, Illinois 60439Preprint MCS-P317-0792AbstractAutomatic di�erentiation provides the foundationfor sensitivity analysis and subsequent design optimiza-tion of complex systems by reliably computing deriva-tives of large computer codes, with the potential ofdoing it many times faster compared to current ap-proaches. This paper describes the ADIFOR (Auto-matic DI�erentiation of FORtran) system, a transla-tor that augments Fortran programs with statementsfor the computation of derivatives. ADIFOR acceptsarbitrary Fortran 77 code de�ning the computation ofa function and writes portable Fortran 77 code for thecomputation of its derivatives. Our goal is to free thecomputational scientist from worrying about the accu-rate and e�cient computation of derivatives, even forcomplicated \functions", thereby enabling him to con-centrate on the more important issues of system model-ing and algorithmdesign. This paper gives an overviewof the principles underlying the ADIFOR system, andcomments on the power of automatic di�erentiation forcomputing derivatives of implicitly-de�ned functions.1 IntroductionThe modeling of complex systems typically involvesan analysis or simulation phase where the stationarystate or the time evolution of the computer model is de-termined from given parameters and initial conditions.Subsequently, the computational results are compared�This work was supported by the Applied Mathematical Sci-ences subprogram of the O�ce of Energy Research, U. S. De-partment of Energy, under Contract W-31-109-Eng-38 and bythe National Science Foundation under Cooperative AgreementNumber CCR-9120008.This paper appeared in the Proceedings of the 4th Symposiumon Multidisciplinary Analysis and Optimization, AIAA Paper92-4744, pages 433{441, 1992.Copyright c
1992 by the American Institute of Aeronauticsand Astronautics, Inc. The U.S. Government retains a nonex-clusive, royalty-free license to publish or reproduce the publishedform of this contribution, or allow others to do so, for U.S. Gov-ernment purposes.

with observed data or analyzed in view of theoreti-cal insights and expectations. These considerationsare likely to suggest numerical parameter adjustmentsor even structural modi�cations in the computationalmodel.In this process, it is critical to assess how changesin the input parameters a�ect changes in the output.Derivatives quantify this e�ect, and the task of analyz-ing and adjusting the computational model usually re-lies heavily on the availability of so-called sensitivities,namely, the partial derivatives of intermediate or �nalresults with respect to input parameters or other inter-mediate variables. In any case, the two-stage process ofsensitivity analysis and subsequent model adjustmentis likely to be repeated several times before the com-putational results are judged to re
ect the modeledsystem state or yield a useful prediction of its timeevolution su�ciently closely. It should be obvious thatthe accuracy of the computed sensitivities is critical inguiding this adjustment and validation process.However, in most applications, the sensitivity analy-sis of such an analysis code is only the �rst step. Oncethe model has been validated, one is interested in deter-mining the values of the input parameters of the com-putational model such as to achieve a desired physicalbehavior. For example, a major thrust of the Com-putational Aerosciences project of NASA's High Per-formance Computing and Communications Programis multidisciplinary design and optimization of a highspeed civil transport [19]. A related activity is theHiSAIR (High Speed Airframe Integration Research)project which also has the optimization of a high speedcivil transport as a focus and encompasses a greaterbreadth of technical disciplines in
uencing the designof such a vehicle.A key technology that is required for these optimiza-tion procedures is the capability to calculate the sensi-tivity derivatives of outputs from the various analysiscodes with respect to a set of design variables that areadjusted by a nonlinear programming code to achievesome optimal measure of vehicle performance. Otherapplications arise in real-time simulation and control

of road vehicles, robots, and macromolecules, parame-ter identi�cation problems in geophysical systems andaccelerator beam tracing for the design of optical in-struments and particle accelerators [17].There are four approaches to computing derivatives:By Hand: This is error-prone, and applicable only insimple cases.Divided Di�erences: The derivative of f with re-spect to the ith component of x at a particularpoint xo is approximated by either one-sided dif-ferences@ f(x)@ xi jx=xo � f(xo � h � ei)� f(xo)�hor central di�erences@ f(x)@ xi jx=xo � f(xo + h � ei)� f(xo � h � ei)2h :Here ei is the ith cartesian basis vector. Com-puting derivatives by divided di�erences has theadvantage that the function is only needed as a`black box'. The main drawback of divided di�er-ences is that their accuracy is hard to assess. Asmall step size h is needed for properly approxi-mating derivatives, yet may lead to numerical can-cellation and the loss of many digits of accuracy.In addition, varying scales of the x0is may requiredi�erent step sizes for the various parameters.Symbolic Di�erentiation:This functionality is provided by symbolic ma-nipulation packages such as Maple, Reduce, Mac-syma, or Mathematica. Given a string describingthe de�nition of a function, symbolic manipulationpackages provide exact derivatives, expressing thederivatives all in terms of the intermediate vari-ables. Symbolic di�erentiation is a powerful tech-nique, but quickly runs into resource limitationswhen applied to even moderately sized problems(described by 100 lines of code, say).Automatic Di�erentiation: Automatic di�erentia-tion techniques rely on the fact that every func-tion, no matter how complicated, is executed on acomputer as a (potentially very long) sequence ofelementary operations such as additions, multipli-cations, and elementary functions such as sin andcos. By applying the chain rule, e.g.@@tf(g(t))jt=t0 = � @@sf(s)js=g(t0)�� @@tg(t)jt=t0�over and over again to the composition of thoseelementary operations, one can compute deriva-tive information of f exactly and in a completelymechanical fashion.

if x(1) > 2 thena = x(1)+x(2)elsea = - x(1)/(x(2)*x(2)*x(2))end ifdo i = 1, 2a = a*x(i)end doy(1) = a/x(2)y(2) = sin(x(2))Figure 1: Sample Program for a Function f : x 7! yThe paper is structured as follows. The next sec-tion gives an introduction into automatic di�erentia-tion, and in section 3 we give a brief overview of thefunctionality of the ADIFOR automatic di�erentiationsystem. Section 4 elaborates on the connection be-tween automatic di�erentiation and the computationof derivatives of implicitly de�ned functions. Lastly, wecomment on some future improvements of ADIFOR.2 Automatic Di�erentiationWe illustrate automatic di�erentiation with an ex-ample. Assume that we have the sample programshown in Figure 1 for the computation of a functionf : R2 ! R2. Here, the vector x contains the indepen-dent variables, and the vector y contains the dependentvariables. The function described by this program isde�ned except at x(2) = 0 and is di�erentiable exceptat x(1) = 2.By associating a derivative object rt with everyvariable t, we can transform this program into onefor computing derivatives. Assume that rt containsthe derivatives of t with respect to the independentvariables x, rt = @ t@ x(1)@ t@ x(2) ! :We can propagate those derivatives by using elemen-tary di�erentiation arithmetic based on the chain rule(see for example [23] for more details). For example,the statement a = x(1) + x(2)implies ra = rx(1) +rx(2):The chain rule, applied to the statementy(1) = a=x(2);implies thatry(1) = @ y(1)@ a � ra+ @ y(1)@ x(2) � rx(2)= 1:0=x(2) � ra� (a=(x(2) � x(2))) � rx(2):

t1 = - yt2 = z * zt3 = t2 * zw = t1 / t3t1bar = (1 / t3)t3bar = (- t1 / t3)t2bar = t3bar * zzbar = t3bar * t2zbar = zbar + t2bar * zzbar = zbar + t2bar * zybar = - t1barFigure 2: Reverse Mode Computation of(ybar; zbar) = (@ w@ y ; @ w@ z)Elementary functions are easy to deal with. For exam-ple, the statement y(2) = sin(x(2))impliesry(2) = @ y(2)@ x(2) � rx(2) = cos(x(2)) � rx(2):Straightforward application of the chain rule in thisfashion then leads to the so-called forward mode of au-tomatic di�erentiation, which propagates the deriva-tives with respect to the independent variables.Another way of automatic di�erentiation is the so-called reverse mode, which propagates the derivativesof the �nal result with respect to an intermediate quan-tities. These quantities are usually called adjoints. Forillustration sake, let us consider the statementw = �y=(z � z � z):In the reverse mode, let tbar denote the adjoint objectcorresponding to t. The goal is for tbar to contain thederivative @ w@ t . We know that wbar = @ w@ w = 1:0. Wecan compute ybar and zbar by applying the follow-ing simple rule to the binary statements executed incomputing w, but in reverse order:if s = f(t), then tbar += sbar * (df / dt)if s = f(t,u), then tbar += sbar * (df /dt)ubar += sbar * (df /du)Using this simple recipe (see [15, 23]), and applyingstraightforward optimizations (see [2] for a more de-tailed description), we generate the so-called adjointcode shown in Figure 2 for computing w and its deriva-tives.If the statement for the computation of w was em-bedded into a larger computation, one can then exploitthe fact that rw = @ w@ y � ry+ @ w@ z � rz:

if x(1) > 2.0 thenra = rx(1) + rx(2);a = x(1)+x(2);elset1 = - x(1); t2 = x(2) * x(2);t3 = t2 * x(2); t1bar = (1 / t3);t3bar = (- t1 / t3); t2bar = t3bar * z;zbar = t3bar * t2; zbar = zbar + t2bar * z;zbar = zbar + t2bar * z; ybar = - t1bar;ra = ybar * rx(1) + zbar * rx(2)a = t1/t3;end ifdo i = 1, 2ra = x(i) * ra + a * rx(i);a = a * x(i);end dory(1) = 1.0/x(2) * ra - a/(x(2)*x(2)) * rx(2);y(1) = a/x(2);ry(2) = cos(x(2)) * rx(2);y(2) = sin(x(2))Figure 3: Sample Program of Figure 1 Aug-mented with Derivative StatementsHence, after computing the \local" derivatives(@ w@ y ; @ w@ z) of w with respect to z and y, one can theneasily compute rw, the derivatives of w with respect tox. That is, we \preaccumulate" the derivatives of theright-hand side, and then use the chain rule to advancethe global computation. This hybrid approach savesstorage and computation compared to the straightfor-ward forward mode whenever the number of variableson the right-hand side of an assignment statement isgreater than two. Using this hybrid approach on thecode shown in Figure 1 we arrive at the pseudo-codeshown in Figure 3 for computing the derivatives of y(1)and y(2).The derivatives computed by automatic di�erentia-tion are guaranteed to be reliable, unlike those com-puted by divided di�erence approximations. Griewankand Reese [18] have shown that in the presence ofround-o� the derivative objects computed by auto-matic di�erentiation are the exact result of a nonlinearsystem whose elementary partial derivatives have beenperturbed by factors of at most (1+ ")2, where " is therelative machine precision.We also mention that the automatic di�erentiationapproach can easily be generalized to the computationof univariate Taylor series or multivariate higher-orderderivatives [10,23,16,4].3 The ADIFOR Automatic Di�erentiation ToolThe automatic di�erentiation of computer arith-metic has been investigated since before 1960. Sincethen there have been various implementations of auto-

matic di�erentiation, and a recent survey can be foundin [20]. However, for the most part, they were con-ceived by the need for accurate �rst- and higher-orderderivatives in a certain application. Distribution forthe mainstream of scienti�c computing was not a ma-jor concern, and, since these tools for the most partcomputed derivatives slower than divided di�erenceapproaches, potential users were discouraged.Recently, however, process towards a general-purpose automatic di�erentiation tool competitivewith divided di�erences has been made with the de-velopment of ADIFOR (Automatic Di�erentiation inFortran) [2, 5, 3, 1]. ADIFOR provides automatic dif-ferentiation for programs written in Fortran 77. Givena Fortran subroutine (or collection of subroutines) de-scribing a \function", and an indication which vari-ables in parameter lists or common blocks correspondto \independent" and \dependent" variables with re-spect to di�erentiation, ADIFOR produces Fortran 77code that allows the computation of the derivatives ofthe dependent variables with respect to the indepen-dent ones.ADIFOR was designed from the outset with large-scale codes in mind, and it uses the facilities of theParaScope Fortran environment [7,8] to parse the code,and extract control
ow and dependence
ow informa-tion. ADIFOR produces portable Fortran-77 code andaccepts almost all of Fortran-77, in particular arbitrarycalling sequences, nested subroutines, common blocksand equivalences. The ADIFOR-generated code triesto preserve vectorization and parallelism in the origi-nal code, and employs a consistent subroutine namingscheme which allows for code tuning, the exploitationof domain-speci�c knowledge and the exploitation ofvendor-supplied libraries.ADIFOR employs the hybrid forward/reverse modethat was shown in the previous section. That is, foreach assignment statement, we generate code for com-puting the partial derivatives of the result with respectto the variables on the right-hand side, and then em-ploy the forward mode to propagate overall derivatives.The resulting decrease in complexity compared to astraightforward forward mode implementation usuallyis substantial. For example, the code for the bluntbody shock tracking problem by Shubin [25] needs tocompute the 190 � 190 Jacobian of a \function" de-scribed by 1400 lines of Fortran code. When we ex-ecute this code for a particular set of input values,we execute a total of 1840 assignment statements thatwere augmented with derivative computations. Thedistribution of the number of variables in the right-hand side of the assignment statements is shown inFigure 4. We see that only 543 assignments involvetwo variables, and as a result the hybrid mode used inADIFOR computes derivatives at roughly 69% the costof a straightforward forward mode implementation.

0 2 4 6 8 10 12 14 16
0

100

200

300

400

500

600

Number of Variables in Assignment

Supersonic Blunt Body Problem

as

si
gn

m
en

ts

Total = 1840

Figure 4: Number of Variables in AssignmentStatementsWe also stress that ADIFOR uses the data
ow anal-ysis information from ParaScope to determine the setof variables that require derivative information in ad-dition to the dependent and independent ones. Thisapproach allows for an intuitive interface, and greatlyreduces the storage requirements of the derivative code.ADIFOR-generated code can be used in variousways: Instead of simply producing code to computethe Jacobian J , ADIFOR produces code to computeJ � S, where the \seed matrix" S is initialized by theuser. So if S is the identity, ADIFOR computes thefull Jacobian, and if S is just a vector, ADIFOR com-putes the product of the Jacobian by a vector. \Com-pressed" versions of sparse Jacobians can be computedby exploiting the same graph coloring techniques [12,11] that are used for divided di�erence approximationsof sparse Jacobians.The idea is best understood with an example. As-sume that we have a functionF = 0BBBB@ f1f2f3f4f5 1CCCCA : x 2 R4 7! y 2 R5whose Jacobian J has the following structure (symbolsdenote nonzeros, and zeros are not shown):J = 0BBBB@

 34 34 24 2 1CCCCA :So columns 1 and 2, as well as columns 3 and 4 arestructurally orthogonal, and in divided-di�erence ap-proximations one could exploit that by perturbing both

nz = 2582Figure 5: Sparsity Structure of 190 � 190Blunt Body Problem Jacobian
nz = 2582Figure 6: Sparsity Structure of Compressed190� 28 Blunt Body Problem Jacobianx1 and x2 in one function evaluation, and both x3 andx4 in the other. In ADIFOR we exploit this fact bysetting S = 0BB@ 1 01 00 10 1 1CCA ;For a more realistic example, the 190�190 Jacobianof Shubin's blunt body shock tracking problem has only2582 nonzero entries and its structure is shown in Fig-ure 5. Due to its sparsity structure, it can be condensedinto the \compressed Jacobian" shown in Figure 6 andADIFOR will compute this compressed Jacobian if theseed matrix is initialized to the structure shown in Fig-ure 7.The running time and storage requirements of the

nz = 190Figure 7: Structure of ADIFOR Seed Ma-trix Corresponding to Compressed Jacobianin Figure 6. Sparc-2 RS/6000Sparse DD 0.20 0.130Compressed ADIFOR 0.13 0.025Dense ADIFOR 0.85 0.056Table 1: Performance of ADIFOR-generatedDerivative Code (seconds)ADIFOR-generated code are roughly proportional tothe numbers of columns of S, so the computation ofJacobian-vector products and compressed Jacobiansrequires much less time and storage than the gener-ation of the full Jacobian matrix. For example, onthe blunt body problem we observe the performanceshown in Table on Sun Microsystems SPARC 2 andIBM RS/6000-550 workstations. The �rst line givesthe run-time of a sparse divided-di�erence approxima-tion, based on the same coloring scheme as the \com-pressed Jacobian" approach in the second line. Thethird line shows the running time obtained if one treatsthis Jacobian as a dense one and ignores sparsity; thismeans that all derivative operations now are performedwith vectors of length 190 instead of 28. As expected,performance su�ers, although much less so on the IBM.This is due to the superscalar architecture of this chipand, we suspect, to e�cient microcode implementa-tions of multiplications by zero.4 Di�erentiating Implicitly De�ned FunctionsIn our experience most CFD codes in aeronauticalengineering compute
ow and displacements �elds by

for k = 1; : : : docompute preconditioner Pkzk+1 = zk � Pk F (zk; x�)if (jjF (zk; x�)jj small enough) stopend forFigure 8: Generic Iteration for Solving F (z�; x�) = 0iterative procedures, which may converge very slowlyand often involve discontinuous adjustments of grids orfree boundaries. That is, for given x� we are solving anonlinear system F (z; x�) = 0 (1)to �nd the value z� = z(x�) of the function implic-itly de�ned by F . The question is under what cir-cumstances an auto-di�erentiated version of the codeimplementing the root�nding process computes the de-sired derivatives z0� = dzdx jx=x� . For the sake of discus-sion let us assume that our iteration for solving (1) hasthe form shown in Figure 8. This iteration convergeswhen jjI � Pk Fz(zk; x�)jj � � < 1 (2)The notation Fz (Fx) is shorthand for @F@z (@F@x). New-ton's method, for example, is a particular instance ofthis scheme with Pk = (dFdz jz=zk)�1.The implicit function theorem tells us that at the�xed-point (z�; x�) we haveFzz0� + Fx = 0 (3)and in fact a not too uncommon approach (the so-called \semianalytic" approach) for obtaining z0 isto compute (or approximate by divided di�erences)Fz(x�) and Fx(x�) and to solve the resulting linearsystem (3) for z0. However, the reliability of this ap-proach depends greatly on the conditioning of Fz(x�)as well as the accuracy of Fz and Fx. In the followingdiscussion we assume that a \prime" notation (like z0)always denotes di�erentiation with respect to x.Applying automatic di�erentiation to the generic it-eration of Figure 8, we obtain the iteration shown inFigure 9. Note that we have replaced the stopping cri-terion based on jjF jj by one based on dFdx . While it isnatural to do so, this currently has to be done by hand.Gilbert [14] and Christianson [9] show that this iter-ation produces meaningful results for iterations suchas Newton's method. Recently, we have been able toextend these results (details will be given in a forth-coming paper) and have shown that the simpler itera-tion shown in Figure 10 also converges to the desiredderivative value z0� when condition (2) is satis�ed. Thedi�erence between the approaches in Figures 9 and 10is that in the latter we treat the preconditioner Pk as

for k = 1; : : : docompute preconditioner Pk and P 0kz0k+1 =z0k � P 0kF (zk; x�)�Pk(Fz(zk; x�)z0k + Fx(zk; x�))if (jjFz(zk; x�)z0k + Fx(zk; x�)jj small enough) stopend forFigure 9: Straightforward Iteration for Solv-ing Fz(z�; x�)z0� + Fx(z�; x�) = 0for k = 1; : : : docompute preconditioner Pkz0k+1 = z0k � Pk (Fz(zk; x�)z0k + Fx(zk; x�))if (jjFz(zk; x�)z0k + Fx(zk; x�jj small enough) stopend forFigure 10: Improved Iteration for SolvingFz(z�; x�)z0� + Fx(z�; x�) = 0a constant and hence drop the P 0kF (zk; x�) term in theupdate of z0k+1. This makes intuitive sense since in theend F (zk; x�) will converge to zero anyway, therebyannihilating any contribution of P 0k. Also P 0k is likelyto involve higher derivatives that (according to the im-plicit function theorem) play no role in the existenceof z0�.The implications of this observation for the speed ofderivative computations are noteworthy. For example,in a Newton iteration, we would thus save ourselves thework of di�erentiating through the matrix factorizationprocess, which is by far the dominant work of the itera-tion process. Exploitation of this result at the momentrequires hand-modi�cation of the ADIFOR-generatedderivative code to eliminate the derivative computa-tions for P 0k. Depending on code modularity, this mayor may not be easy to do. We are experimenting with\deactivation" concepts which would allow this trans-formation to proceed in a more user-friendly fashion.Another point worth mentioning is that it does notmake sense to start the derivative iterations until theiterations for F (z; x�) = 0 have essentially converged.Obviously, the derivatives z0� will not settle in untilthe \function value" z� itself has. Again, this requireshand-modi�cation of the ADIFOR-generated deriva-tive code, but the savings potential is signi�cant. Forexample, Figure 11 shows the convergence behavior ofthe lift coe�cient, which is implicitly de�ned as a func-tion of the maximal airfoil thickness, the mach number,the camber, maximal camber position, and the angle ofattack in Elbanna and Carlson's transonic code [13] forM = 1:2; � = 1 with an NACA 1406 airfoil. The line

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

-15

10
-10

10
-5

10
0

10
5

Automatic Differentiation of Implicitly Defined Functions

R
el

at
iv

e
R

es
id

ua
l

Iteration Number

Solving F(x,g(x))=0

Solving H(g_x) = F_x + F_y*g_x = 0

 g_x initialized to 0

||F||/||F_0||

||H||/||H_0||

q = 0.984

q = 0.978

Figure 11: Convergence Behavior of Func-tion and Derivatives in Elbanna and Carlson'sCodeMethod TimeFinite Di�s 421Delayed ADIFOR 217ADIFOR from the beginning 838Table 2: Run-Time of Various DerivativeSchemes for Elbanna/Carlson Code on Sparc-2labeled jjF jj=jjF0jj plots the improvement of the func-tion residual with respect to the initial residual. Wesee that for the �rst roughly 900 iterations the nonlin-ear root �nder hardly improves the residual. There-after, the convergence behavior is close to linear witha convergence factor q � 0:984. After iteration 1434,the function residual had decreased by more than 8 or-ders of magnitude and we started up the ADIFOR-edversion of the iteration (corresponding to the versionin Figure 9), having initialized the derivatives z00 to0. The line labelled jjHjj=jjH0jj shows the improve-ment in the derivative residual and we stopped after501 more iterations when we had decreased the deriva-tive residual by four orders of magnitude. The result-ing derivative value was (up to four digits) the sameas that obtained by divided di�erence approximationswith h = 1:0e�8. As we can see, after the initial jump(due to our starting value), the derivatives convergelinearly with a convergence rate that is comparable tothat of the function iteration.By delaying starting up the derivative iteration, wewere able to realize substantial savings as shown in Ta-ble 2. The scheme just described is signi�cantly fasterthan the divided-di�erence approximation for Elbanna

and Carlson's code. On the other hand, had we notdelayed computation of derivatives, and di�erentiatedaway while the function was really not converging yet,it would have taken a total of 838 seconds.In general, the theory of automatic di�erentiationdoes so far not guarantee that the derivatives of iteratesconverge to the correct limits in all cases of interest.However, by monitoring the residual jjFz(zk; x�)z0k +Fx(zk; x�)jj, we have a constructive criterion by whichto judge the progress (or stalling) of the derivative it-eration process. Moreover, by judiciously deactivat-ing certain variables one can implement various semi-analytical schemes for sensitivity analysis that havebeen developed and tested by aeronautical engineers(see, e.g. [22,21,24]. Again, derivative convergence isnot a priori guaranteed, but it can be tested construc-tively with little extra e�ort.5 Future WorkOur goal is to further decrease the complexity ofcomputing derivatives, both in terms of man-hours andcpu-seconds.For example, at the moment we are experimentingwith a version of ADIFOR that in addition to comput-ing the Jacobian values, also automatically computesthe location of the nonzero entries in the Jacobian. Thekey observation is that all our gradient computationshave the formvector =Xi scalari � vectori:By merging the structure of the vectors on the right-hand side, we can obtain the structure of the vectoron the left-hand side. In addition, the proper use ofsparse vector data structures ensures that we performcomputations only with the non-zero components ofthe various derivative vectors. For example, even witha relatively simple implementation of \sparse mergingvectors" we obtained running times of 0.13 seconds on aSparc-2 and 0.043 seconds on the IBM RS6000/550 forShubin's blunt body shock problem. These numberscompare favorably with those shown in Table , in par-ticular if one keeps in mind that no previous knowledgeof the sparsity structure was required in the \sparsesaxpy" approach. Of course the dynamic data struc-tures required to support the automatic sparsity detec-tion are more expensive to implement, but we foundthat even though the �nal Jacobian has at most 19nonzeros per row, the average number of nonzeros inderivative objects was only 5.4 nonzeros. As a result,the \sparse saxpy" approach performed only 5,537 ad-ditions and 31,633 additions, whereas the \compressedJacobian" approach performed 134,428 additions and185,948 multiplications, and hence 88% more
ops.The automatic detection of sparsity structures is a

unique capability of automatic di�erentiation and weexpect that it will greatly contribute to the develop-ment of user-friendly optimization problem solving en-vironments.Another aspect that we have to address is that of in-put and output. ADIFOR does not yet properly handle�le input and output (although there are ways to getaround this [6]). The reason is that we cannot tracedata dependencies through I/O statements. However,in many MDO projects the codes modeling the variousdisciplines have been developed and are maintained bydistinct groups on di�erent platform. They may runasynchronously and exchange data only through disk�les or even magnetic tapes. For example, grid de-sign is often done with human interaction and the re-sult is communicated to the structural or aerodynami-cal code. Therefore, automatic di�erentiation must bemodular and respect the boundaries between varioussystem components without requiring a common run-time system. This goal has been largely achieved inADIFOR even though automatic �le transfer of deriva-tive information is not yet possible.In summary, we believe that as our e�orts progress,automatic di�erentiation will be able to computederivatives orders of magnitudes faster than currentapproaches and be the catalyst enabling the solutionof MDO problems that were previously thought in-tractable.AcknowledgementsWe would like to thank Alan Carle, George Corliss,and Paul Hovland for many stimulating discussionsand their essential roles in the ADIFOR developmentproject. We would also like to thank Perry Newmanfrom NASA Langley and Greg Shubin from BoeingComputing Services for making the test codes avail-able and for sharing their knowledge with us.References[1] Christian Bischof, Alan Carle, George Corliss, andAndreas Griewank. ADIFOR: automatic di�eren-tiation in a source translator environment. ADI-FOR Working Note #5, MCS{P288{0192, Math-ematics and Computer Science Division, ArgonneNational Laboratory, 1992. Accepted for publica-tion in Proceedings of International Symposiumon Symbolic and Algebraic Computation.[2] Christian Bischof, Alan Carle, George Corliss, An-dreas Griewank, and Paul Hovland. Adifor: Gen-erating derivative codes from Fortran programs.ADIFOR Working Note #1, MCS{P263{0991,Mathematics and Computer Science Division, Ar-gonne National Laboratory, 1991. To appear inScienti�c Programming.

[3] Christian Bischof, George Corliss, and AndreasGriewank. ADIFOR exception handling. ADI-FOR Working Note #3, MCS{TM{159, Mathe-matics and Computer Science Division, ArgonneNational Laboratory, 1991.[4] Christian Bischof, George Corliss, and AndreasGriewank. Computing second- and higher-orderderivatives through univariate Taylor series. ADI-FOR Working Note #6, MCS{P296{0392, Math-ematics and Computer Science Division, ArgonneNational Laboratory, 1992.[5] Christian Bischof and Paul Hovland. Using ADI-FOR to compute dense and sparse Jacobians. AD-IFOR Working Note #2, MCS{TM{158, Mathe-matics and Computer Science Division, ArgonneNational Laboratory, 1991.[6] Christian H. Bischof, Alan Carle, George Corliss,Andreas Griewank, Paul Hovland, and Moe El-Khadiri. Getting started with adifor. ADIFORWorking Note #9, ANL{MCS{TM-164, Mathe-matics and Computer Science Division, ArgonneNational Laboratory, 1992.[7] D. Callahan, K. Cooper, R. T. Hood, KenKennedy, and Linda M. Torczon. ParaScope: Aparallel programming environment. InternationalJournal of Supercomputer Applications, 2(4), De-cember 1988.[8] Alan Carle, Keith D. Cooper, Robert T. Hood,Ken Kennedy, Linda Torczon, and Scott K.Warren. A practical environment for scienti�cprogramming. IEEE Computer, 20(11):75{89,November 1987.[9] Bruce Christianson. Reverse accumulation and ac-curate rounding error estimates for taylor seriescoe�cients. Optimization Methods and Software,1(1):81{94, 1992.[10] Bruce D. Christianson. Automatic Hessians byreverse accumulation. Technical Report NOCTR228, The Numerical Optimisation Center, Hat-�eld Polytechnic, Hat�eld, U.K., April 1990.[11] T. F. Coleman, B. S. Garbow, and J. J. Mor�e.Software for estimating sparse Jacobian matrices.ACM Trans. Math. Software, 10:329 { 345, 1984.[12] T. F. Coleman and J. J. Mor�e. Estimationof sparse Jacobian matrices and graph coloringproblems. SIAM Journal on Numerical Analysis,20:187 { 209, 1984.[13] H.M. Elbanna and L.A. Carlson. Determinationof aerodynamic sensitivity coe�cients in the tran-sonic and supersonic regimes. In Proceedings of the

27th AIAA Aerospace Sciences Meeting, AIAAPaper 89-0532. American Institute of Aeronauticsand Astronautics, 1989.[14] Jean-Charles Gilbert. Automatic di�erentiationand iterative processes. Optimization Methods andSoftware, 1(1):13{22, 1992.[15] Andreas Griewank. On automatic di�erentiation.In M. Iri and K. Tanabe, editors, MathematicalProgramming: Recent Developments and Applica-tions, pages 83 { 108. Kluwer Academic Publish-ers, 1989.[16] Andreas Griewank. Automatic evaluation of �rst-and higher-derivative vectors. In R. Seydel, F. W.Schneider, T. K�upper, and H. Troger, editors,Proceedings of the Conference at W�urzburg, Aug.1990, Bifurcation and Chaos: Analysis, Algo-rithms, Applications, volume 97, pages 135 { 148.Birkh�auser Verlag, Basel, Switzerland, 1991.[17] Andreas Griewank and George F. Corliss, edi-tors. Automatic Di�erentiation of Algorithms:Theory, Implementation, and Application. SIAM,Philadelphia, Penn., 1991.[18] Andreas Griewank and Shawn Reese. On the cal-culation of Jacobian matrices by the Markowitzrule. In Andreas Griewank and George F. Corliss,editors, Automatic Di�erentiation of Algorithms:Theory, Implementation, and Application, pages126 { 135. SIAM, Philadelphia, Penn., 1991.[19] T. L. Holst, M. D. Salas, and R. W. Claus. TheNASA computational aerosciences program { to-ward Tera
op computing. In Proceedings of the30th Aerospace Sciences Meeting, pages AIAA Pa-per 92{0558. American Institute of Aeronauticsand Astronautics, 1992.[20] David Juedes. A taxonomy of automatic di�er-entiation tools. In Andreas Griewank and GeorgeCorliss, editors, Proceedings of the Workshop onAutomatic Di�erentiation of Algorithms: Theory,Implementation, and Application, Philadelphia,1991. SIAM. To appear.[21] V. M. Korivi, A. C. Taylor, P. A. Newman, G. W.Hou, and H. E. Jones. An incremental strategyfor calculating consistent discrete CFD sensitiv-ity derivatives. NASA Technical Memorandum104207, NASA Langley Research Center, Febru-ary 1992.[22] P. A. Newman, G. J.-W. Hou, H. E. Jones, A. C.Taylor, and V. M. Korivi. Observations on com-putational methodologies for use in large-scale,gradient-based, multidisciplinary design incorpo-rating advanced CFD codes. NASA Technical

Memorandum 104206, NASA Langley ResearchCenter, 1992.[23] Louis B. Rall. Automatic Di�erentiation: Tech-niques and Applications, volume 120 of LectureNotes in Computer Science. Springer Verlag,Berlin, 1981.[24] G. R. Shubin. Obtaining \cheap" optimiza-tion gradients from computational aerodynamicscodes. Applied Mathematics and Statistics Tech-nical Report AMS{TR{164, Boeing ComputerServices, June 1991.[25] G. R. Shubin, A. B. Stephens, H. M. Glaz, A. B.Wardlaw, and L. B. Hackerman. Steady shocktracking, Newton's method, and the supersonicblunt body problem. SIAM J. on Sci. and Stat.Computing, 3(2):127 { 144, June 1982.

